Step III, Hints and Answers June 2006

Step III

1	$y = \frac{2x(x^2 - 5)}{x^2 - 4}$
	x - 4
	$=2x-\frac{2x}{(x-2)(x+2)}$
	Asymptotes are $v = 2x$ $x = +2$
	v=2×
	x
	$\frac{dy}{dx} = 2 - \frac{2(x-2)(x+2) - 4x^2}{(x-2)^2(x+2)^2}$
	(or equivalent).
	Equation of the tangent at O is
	$y = \frac{5x}{2}$.
	2
(i)	$3x(x^2-5) = (x^2-4)(x+3)$
	$\Leftrightarrow \frac{2x(x^2-5)}{x^2-4} = \frac{2x}{3} + 2 (x \neq \pm 2)$
	$y = \frac{2}{3}x + 2$ cuts the sketched curve in three points, so three roots.
(ii)	$4x(x^2-5) = (x^2-4)(5x-2)$
	$\Leftrightarrow \frac{2x(x^2-5)}{x^2-4} = \frac{5x}{2} - 1 (x \neq \pm 2)^{-1}$
	$y = \frac{5x}{2} - 1$ passes through the intersection of $x = 2$ and $y = 2x$ and is parallel
	to $y = \frac{5x}{2}$ so just one root.
(iii)	$4x^{2}(x^{2}-5)^{2} = (x^{2}-4)^{2}(x^{2}+1)$
	$\Leftrightarrow \frac{2x(x^2-5)}{x^2-4} = \pm \sqrt{(x^2+1)} (x \neq \pm 2)$
	$y = \pm \sqrt{(x^2 + 1)}$ has two branches with asymptotes $y = \pm x$, so there are six
	roots.
2 (i)	First "show" by change of variable $\theta = -\phi$ (say).
	Then

	$2I = \int_{-\pi/2}^{\pi/2} \frac{\cos^2\theta}{1+\sin\theta\sin 2\alpha} d\theta + \int_{-\pi/2}^{\pi/2} \frac{\cos^2\theta}{1-\sin\theta\sin 2\alpha} d\theta$
	r_{2}^{π} r_{2}^{π} r_{2}^{π} r_{2}^{π} r_{2}^{π}
	$= \int_{-\pi/2}^{2} \frac{2}{\sec^2 \theta - \tan^2 \theta \sin^2 2\alpha} d\theta$
	and next "show" follows.
(ii)	$J = \sec 2\alpha \int_{-\pi/2}^{\pi/2} \frac{1}{1 + (\cos 2\alpha \tan \theta)^2} \cos 2\alpha \sec^2 \theta d\theta$
	$= \sec 2\alpha \int_{-\pi/2}^{\pi/2} \frac{1}{1+u^2} du \text{ (since } \cos 2\alpha > 0)$
	$=\pi\sec 2\alpha$
(iii)	$I\sin^2 2\alpha + J\cos^2 2\alpha = \pi.$
	Result follows after use of (ii).
(iv)	In this case, $\cos 2\alpha < 0$, so $J = -\pi \sec 2\alpha$.
	Then $I = \frac{1}{2}\pi \csc^2 \alpha$
3 (i)	$\tan x$ is an odd function.
	Express both sides in terms of $\tan x$.
	From identity, substitute series and result follows by equating coefficients of
(ii)	powers of x. Show that $a_{1} \neq a_{2} = 2 \cos \alpha^{2} x$ and follow some method
(II) (iii)	Show that $\cot x + \tan x = 2\cos \sec 2x$ and follow same method.
(111)	Identity follows from $1 + \cot x = \csc x$. Equate coefficients to show that all coefficients for even <i>n</i> are zero, and
	1
	$a_1 = 1, a_3 = \frac{1}{3}.$
4	Let $x = y$ and deduce first result.
	2f(x) = f(2x)
	$\Rightarrow 2f'(x) = 2f'(2x)$
	$\Rightarrow 2 f''(x) = 4 f''(2x)$
	then put $x = 0$ to get $f(0) = 0$, $f''(0) = 0$.
	Similarly all higher order derivatives are zero, so by Maclaurin the most
	general function is cx , where c is a constant.
(i)	Use properties of logs to show that $G(x) + G(y) = G(x + y)$.
	Deduce that $g(x) = e^{cx}$.
(ii)	Show that $H(u) + H(v) = H(u + v)$
	so $h(x) = c \ln x$.
(iii)	Let $T(x) = t(\tan x)$.
	Deduce that $t(x) = c \arctan x$.
5	There are essentially two different configurations, corresponding to clockwise
	and anticlockwise arrangements of α , β , γ taken in order.
	In what follows, $\omega = \frac{-1 + \sqrt{3}}{2}$, the cube root of unity with modulus 1 and
	argument $\frac{2\pi}{3}$; $1 + \omega + \omega^2 = 0$ (*) is assumed.

Then either $\beta - \gamma = \omega(\gamma - \alpha)$ and $\beta - \gamma = \omega^2(\gamma - \alpha)$ expresses equality of adjacent sides and the correct angle between them for each of the two cases; by SAS this establishes an equilateral triangle. These two are equivalent to $[\beta - \gamma - \omega(\gamma - \alpha)][\beta - \gamma - \omega^2(\gamma - \alpha)] = 0$. The required form is an expanded version of this, using (*). NB It is essential to be clear that the argument works both ways. If α , β , γ are the roots of the equation given, $-a = \alpha + \beta + \gamma, b = \alpha\beta + \beta\gamma + \gamma\alpha, c = -\alpha\beta\gamma.$ Then $a^2 - 3b = \alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha$ so $a^2 - 3b = 0$ is equivalent to the expression in the first part. Result follows. $z \rightarrow pw$ is an enlargement combined with rotation, so object and image are similar. $pw \rightarrow pw + q$ is a translation so object and image are congruent. Hence under the composition $z \rightarrow pw + q$ object and image are similar. Result follows. Aliter. Substitute z = pw + q in the first equation, and simplify. Compare coefficients to determine A and B in terms of a, b and c. Then $a^2 - 3b = 0 \Rightarrow A^2 - 3B = 0$, so result follows. $x = r \cos \theta, y = r \sin \theta, r = r(\theta)$ 6 $\Rightarrow \frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$ and result follows. Gradient of the normal is $\tan \frac{\theta}{2} = t$, say. Then we have $t = -\frac{\frac{dr}{d\theta} - r \tan \theta}{\frac{dr}{d\theta} \tan \theta + r}, \tan \theta = \frac{2t}{1 - t^2}$ This reduces to

	$\frac{dr}{d\theta} = rt$
	$\Rightarrow \ln r = \int \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} d\theta$
	$= -2\ln\left[c\cos\frac{\theta}{2}\right]$
	$\Rightarrow \frac{2}{c^2 r} = 1 + \cos\theta (\operatorname{using} 1 + \cos\theta = 2\cos^2\frac{\theta}{2})$
	This corresponds to the standard equation of a parabola in polars.
7 (i)	Express sinhx in terms of exponentials, factorise and solve to get
	$u = -e^x$ or $u = e^{-x}$ (or $-\cosh x \pm \sinh x$).
	Use both of these as equal to $\frac{dy}{dx}$ and integration to get alternative solutions
	$y = -e^{\pm x} + c.$
	From the given conditions the particular integral is
	$y = 1 - e^{-x}$.
(ii)	Solve the quadratic as before to get either
	$u = \frac{-1 \pm \cosh y}{\sinh y} \text{ (or equivalent)}$
	$\Rightarrow \frac{dx}{dy} = \frac{\sinh y}{-1 \pm \cosh y}$
	\Rightarrow r = ln(cosh v - 1) + c
	$\Rightarrow x = \ln(\cosh y + 1) + c$
	or $x = - \ln(\cos y + 1) + c_2$
	Only the first can satisfy the conditions $x = 0$, $y = 0$, then we have
	$x = \ln \frac{2}{1 + \cosh y}$
	$\Rightarrow \cosh y = 2e^{-x} - 1$
	This is undefined for $x > 0$.
	For $x \to -\infty \Rightarrow \cosh y \to \infty$, and there will be two branches, corresponding
	to $y \to \pm \infty$, as cosh is an even function.
	So $x \to -\infty \Rightarrow \cosh y \to \infty \Rightarrow y \to \infty \Rightarrow e^y \Box 4e^{-x} \Rightarrow y = -x + \ln 4$
	in one case, and similarly $y = x - \ln 4$ in the other.

8	Use (iv) with $f(x) \equiv 1$, $g(x) \equiv 1$ to show that $\Delta 1 = 0$.
	Use (iii) with $\lambda \equiv k$, $f(x) \equiv 1$ to show that $\Delta k = 0$.
	By (iv), (i) $\Delta x^2 = 2x$; ditto $\Delta x^3 = 3x^2$.
	Now show $\Delta kx^n = knx^{n-1}$ by induction.
	Initial step is $\Delta k = 0$; inductive hypothesis is that $\Delta kx^{N} = kNx^{N-1}$.
	Use (iii) and (iv) with hypothesis to show that $\Delta kx^{N+1} = k(N+1)x^N$.
	Now express any $P_k(x)$, a polynomial of degree k, as a sum of such powers,
	and so use (ii) to establish required result.
9	Take O as the zero level for potential energy. Then
	PE of bead at B is mgy ; PE of particle at P is $mgr - mgl$.
	For perpetual equilibrium, the PE must have the same value in any position,
	In particular its value at H; result follows. Express equation shown in polar coordinates to get
	2h
	$r = \frac{1}{1 + \sin \theta}$
	Differentiate and make $\overset{\bullet}{\theta}$ the subject so
	$r(1+\sin\theta)^2$
	$\theta = -\frac{1}{2h\cos\theta}.$
	These two expressions give the desired result.
	By conservation of energy if PE is constant so is KE. Hence KE in a general
	position is equal to the initial value. That gives $(-)^2 + (-)^2$
	$V^2 = \left(r\theta\right) + 2r$
	Speed of the particle at P is $\begin{vmatrix} \mathbf{r} \\ \mathbf{r} \end{vmatrix}$. Use the expressions for V^2 , $\dot{\theta}$ to derive the
10	Use conservation of angular momentum for the first result
10	Use conservation of energy to derive
	$k^{2} + a^{2} + a^{2$
	$v^2 = \frac{1}{k^2} \Omega^2 - (k^2 + r^2) \omega^2$
	dr
	and so by use of the first result and $v = -\frac{dt}{dt}$
	second result follows.
	Now use $\omega = \frac{d\theta}{dt}$ and $\frac{dr}{d\theta} = \frac{dr}{dt} / \frac{d\theta}{dt}$ and the two displayed result to derive
	the third.
	The suggested substitution transforms the third displayed equation to
	$\frac{du}{du} = \sqrt{1+u^2}.$
	$d\theta$
	invert and integrate to get the desired result. k
	Hence $r = \frac{\kappa}{\sinh(\theta + \alpha)}$.
	As $\theta \to \infty$, $r \to 0+$, but $r = 0$ is impossible.

	Then the change of energy in the collision
	$\frac{1}{2}(2M-m)(v_2^2-w_2^2)+\frac{1}{2}m(v_1^2-w_1^2)$
	simplifies to the required expression when the above relations are substituted. Loss of energy of a tile dropping to the floor of a fixed lift and bouncing would be just the same.
12	Model each tourist as trial with success probability $\frac{1}{2}$. If X is the number of
	potential passengers $X \square Bin(1024, \frac{1}{2})$, ie $N(512, 16^2)$ approximately. Lost profit corresponds to $X > 480$. Hence if L is the loss, we have
	$E[L] = \sum_{k=1}^{32} kpr(X = 480 + k) + 32 pr(X > 512)$
	$=\sum_{k=1}^{32} k \cdot \frac{1}{16} \cdot \phi \left(-2 + \frac{k}{16}\right) + 16$
	$\approx \int_{0}^{32} \frac{x}{16} \phi \left(-2 + \frac{x}{16} \right) dx + 16$
	$= \int_{0}^{32} \frac{x}{16} \cdot \frac{1}{\sqrt{2\pi}} \cdot \exp \frac{(x-32)^2}{512} dx + 16$
	Now use substitution to show that this evaluates to
	$\frac{16}{\sqrt{2\pi}} \left(e^{-2} - 1 \right) + 32\Phi(2) .$
	In the course of year the expectation is 50 times that figure, so that is the maximum tolerable licence fee
13	
_	P ₂
	-50
	There are three cases to consider: (1) both on the circumference, (1) P_1 on the diameter and P_1 on the size P_1 and P_2 and P_1 on the diameter and P_2 and P_1 on the diameter and P_2 and P_2 and P_1 and P_2 and
	For case (i) if P lies in the arc $(\alpha, \alpha + \delta \alpha)$ P lies in the arc $(\theta, \theta + \delta \theta)$
	For ease (i), if T_1 lies in the are $(a, a + ba)$ T_2 lies in the are $(b, b + bb)$, $\delta \theta = 1$.
	with probability $\frac{\partial \theta}{\pi + 2}$, the area is $\frac{1}{2} r \sin \theta$. The expected area given P_1
	lies in the arc $(\alpha, \alpha + \delta \alpha)$ is by integration $\frac{1}{\pi + 2}$.
	For case (ii), if P_1 lies in $(r, r + \delta r)$ and P_2 lies in the arc $(\theta, \theta + \delta \theta)$, with
	probability $\frac{\partial \theta}{\pi + 2}$, the area is $\frac{1}{2} r \sin \theta$. The expected area given P_1 lies in
	$(r, r + \delta r)$ from <i>O</i> is by integration $\frac{ r }{\pi + 2}$.
	Case (111) is essentially the same as case (ii).
	r 1 1 r 1
	$\int_{0}^{\pi} \frac{1}{\pi+2} \cdot \frac{1}{\pi+2} d\alpha + 2 \int_{-1}^{1} \frac{ r }{\pi+2} \cdot \frac{1}{\pi+2} dr$
	where the first integral corresponds to case (i) and the second to (ii) and (iii).

	This evaluates to the answer given.
14	$E[aX_1 + bX_2] = aE[X_1] + bE[X_2]$
	$E[X_1X_2] = E[X_1]E[X_2]$
	$E[P] = 2\mu_1 + 2\mu_2$
	$E[P^{2}] = 4E[X_{1}^{2}] + 8E[X_{1}]E[X_{2}] + 4E[X_{2}^{2}]$
	$E[X_1^2] = \mu_1^2 + \sigma_1^2$
	$var[P] = 4(\sigma_1^2 + \sigma_2^2)$
	The standard deviation is the square root of that expression.
	$E[A] = \mu_1 \mu_2$
	$E[A^2] = \mu_1^2 \mu_2^2$
	$\operatorname{var}[A] = \sigma_1^2 \mu_2^2 + \sigma_2^2 \mu_1^2 + \sigma_1^2 \sigma_2^2$
	Again the standard deviation is the square root.
	Now find
	$\operatorname{cov}[P, A] = 2\mu_2 \sigma_1^2 + 2\mu_1 \sigma_2^2$
	This is not zero (as independence would imply) with given conditions.
	Similarly $\cos[7, 4] = 2\sigma^2 u + 2\sigma^2 u - \alpha(u^2 \sigma^2 + u^2 \sigma^2 + \sigma^2 \sigma^2)$
	$Cov[Z, A] = 2O_1 \mu_2 + 2O_2 \mu_1 - \alpha(\mu_1 O_2 + \mu_2 O_1 + O_1 O_2)$
	I hat too is non-zero when α is not the excluded value.
	we consider the exceptional case with the given information.
	We have $\mu_1 = \mu_2 = 2, \sigma_1^2 = \sigma_2^2 = 1, \alpha = \frac{8}{9}$.
	Only three values of A are possible - 1, 3 and 9 - and they correspond to
	unique values of Z. Dependence can be shown by considering, for example,
	$pr\left(Z=\frac{28}{9}\right)=\frac{1}{4}, pr\left(Z=\frac{28}{9} A=3\right)=0.$